Quantum Numbers

1. Determine the total number of e^- that can occupy the following:
 a. One s orbital
 b. Three p orbitals
 c. Five d orbitals
 d. Seven f orbitals

2. Determine how many e^- can have the following quantum numbers:
 a. $n=3, l=0$
 b. $n=3, l=1$
 c. $n=3, l=2, m_l=-1$
 d. $n=5, l=0, m_l=-2, m_s=-1/2$

3. How many e^- can exist in all of the $n=5$ orbitals?

4. How many possible orbitals are there for $n=4$?

5. Figure out the n and l values for the following orbitals:
 a. 2s
 b. 7s
 c. 6p
 d. 5d
 e. 4f

6. State all of the four quantum numbers, their names and explain what they represent.

7. What are the m_l values for a d orbital?

8. What is the lowest value of n for which a d subshell can occur?

9. A single subshell orbital can contain how many e^-?

10. Fluorine commonly has an oxidation state of -1. Draw orbital diagrams, with quantum numbers l and m_l labeled, of both the neutral atom and the most common oxidation state.