Question 3

Potassium sorbate, \(\text{KC}_6\text{H}_7\text{O}_2 \) (molar mass 150. g/mol) is commonly added to diet soft drinks as a preservative. A stock solution of \(\text{KC}_6\text{H}_7\text{O}_2(aq) \) of known concentration must be prepared. A student titrates 45.00 mL of the stock solution with 1.25 \(M \) \(\text{HCl(aq)} \) using both an indicator and a pH meter. The value of \(K_a \) for sorbic acid, \(\text{HC}_6\text{H}_7\text{O}_2 \), is \(1.7 \times 10^{-5} \).

(a) Write the net-ionic equation for the reaction between \(\text{KC}_6\text{H}_7\text{O}_2(aq) \) and \(\text{HCl(aq)} \).

\[
\text{H}^+ + \text{C}_6\text{H}_7\text{O}_2^- \rightleftharpoons \text{HC}_6\text{H}_7\text{O}_2
\]

1 point is earned the net-ionic equation.

(b) A total of 29.95 mL of 1.25 \(M \) \(\text{HCl(aq)} \) is required to reach the equivalence point. Calculate \([\text{KC}_6\text{H}_7\text{O}_2] \) in the stock solution.

\[
\frac{1.25 \text{ mol HCl}}{1000 \text{ mL}} = \frac{x \text{ mol HCl}}{29.95 \text{ mL}} \quad x = 0.0374 \text{ mol HCl}
\]

\[
\frac{0.0374 \text{ mol C}_6\text{H}_7\text{O}_2^-}{45.0 \text{ mL}} = \frac{x \text{ mol C}_6\text{H}_7\text{O}_2^-}{1000 \text{ mL}} \quad \Rightarrow \quad 0.832 \text{ } \text{M}
\]

1 point is earned for the moles of \(\text{HCl} \) at the equivalence point.

1 point is earned for the correct answer.

(c) The pH at the equivalence point of the titration is measured to be 2.54. Which of the following indicators would be the best choice for determining the end point of the titration? Justify your answer.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>(pK_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenolphthalein</td>
<td>9.3</td>
</tr>
<tr>
<td>Bromothymol blue</td>
<td>7.0</td>
</tr>
<tr>
<td>Methyl red</td>
<td>5.0</td>
</tr>
<tr>
<td>Thymol blue</td>
<td>2.0</td>
</tr>
<tr>
<td>Methyl violet</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Thymol blue; it has a \(pK_a \) close to the pH at the equivalence point, so it will change color near the equivalence point.

1 point is earned for the correct indicator.

1 point is earned for correct justification.

(d) Calculate the pH at the half-equivalence point.

\[
\text{pH} = pK_a = -\log (1.7 \times 10^{-5}) = 4.77
\]

1 point is earned for the correct pH.
(e) The initial pH and the equivalence point are plotted on the graph below. Accurately sketch the titration curve on the graph below. Mark the position of the half-equivalence point on the curve with an X.

[The pH curve should have the correct shape.]

1 point is earned for a half-equivalence point consistent with the answer to part (d) and at the correct volume.
1 point is earned for a curve that levels off to a relatively horizontal slope through the half-equivalence point.
1 point is earned for a relatively steep negative slope through the equivalence point.
(f) The pH of the soft drink is 3.37 after the addition of the \(\text{KC}_6\text{H}_7\text{O}_2(aq) \). Which species, \(\text{HC}_6\text{H}_7\text{O}_2 \) or \(\text{C}_6\text{H}_7\text{O}_2^- \), has a higher concentration in the soft drink? Justify your answer.

For sorbic acid, \(K_a = \frac{[\text{H}^+] [\text{C}_6\text{H}_7\text{O}_2^-]}{[\text{HC}_6\text{H}_7\text{O}_2]} \),

thus \(\frac{[\text{C}_6\text{H}_7\text{O}_2^-]}{[\text{HC}_6\text{H}_7\text{O}_2]} = \frac{K_a}{[\text{H}^+]} = \frac{1.7 \times 10^{-5}}{10^{-3.37}} \approx 0.04 \)

\(\Rightarrow [\text{HC}_6\text{H}_7\text{O}_2] > [\text{C}_6\text{H}_7\text{O}_2^-] \)

OR

The concentrations of \(\text{HC}_6\text{H}_7\text{O}_2 \) and \(\text{C}_6\text{H}_7\text{O}_2^- \) are equal at the half-equivalence point. A pH of 3.37 is lower than that at the half-equivalence point, so the protonated form, \(\text{HC}_6\text{H}_7\text{O}_2 \), has a higher concentration in the soft drink.

1 point is earned for identifying the correct species and for making a comparison involving the pH (with or without calculation).