Making Seitan from Flour

Prelab Questions
Without using outside resources, discuss the following questions with your lab group.

1. What do you know about “processed” foods? Name some foods that are processed.

2. What is the difference between wheat and flour?

3. Do you know what seitan is? If so, what do you know about it?

Background
Wheat flour is made from the edible seeds of the wheat plant, called wheat berries. Flour is made by grinding wheat berries into a powder. Flour is a mixture containing mostly starch (i.e. polysaccharides) and the proteins, glutenin and gliadin. The interaction of water with glutenin and gliadin allows for formation of the protein mixture gluten. Gluten has unique elastic properties giving bread its distinctive texture and is the reason that gluten-free imitations of bread products are often subpar.

In this activity, gluten in flour will first be “developed,” then isolated. Gluten is the main ingredient in the vegetarian meat-replacement known as seitan. The texture of seitan is chewy or meat-like and the flavor is easily manipulated by adding herbs, spices, and sauces.

To develop the gluten, water must be added to flour to allow free movement of the glutenin and gliadin proteins, followed by the process of kneading. Kneading causes glutenin and gliadin to interact and realign to form disulfide covalent bonds, intermolecular forces of attraction, and ionic bonds. These interactions serve to crosslink glutenin and gliadin. The chemical formulas and structures of these proteins are varied and complex, so will not be shown, but your teacher may show you a simplified drawing. To picture developed gluten, think of what happens to cooked, cold spaghetti noodles—they stick together and form a tangled mass. Once the gluten is developed in the dough, it can be isolated by rinsing the dough in water. Due to the low content of hydrophilic amino acids (i.e. lysine, arginine, glutamic acid, and aspartic acid), gluten is largely insoluble in water and so will remain in the dough; however, the starches are water-soluble and will dissolve into the water. The remaining gluten can then be simmered to make edible seitan.
Objective
To determine what properties allow for seitan to be made from wheat flour.

Materials
• Whole wheat flour (about 1 cup)
• Paper towels or newspaper to cover work surface
• Bowl mixing and washing dough
• Wooden spoon
• Measuring cups

Safety
• Always wear safety goggles when handling chemicals in the lab.
• Wash your hands thoroughly before leaving the lab.
• Follow the teacher’s instructions for cleanup of materials and disposal of chemicals.
• Food in the lab should be considered a chemical not for consumption.
• Students with celiac disease or a gluten allergy should wear gloves or be excused from the lab activity.

Procedure

Observations: Wheat Berries and Flour
• The teacher will pass around a sample of wheat berries.
• The teacher will pass around a sample of whole wheat flour.
• Record observations in the appropriate table.

Making Seitan

1. Obtain a mixing bowl and wooden spoon.
2. Measure 1 cup of whole wheat flour into the mixing bowl. Add ½ cup of cool tap water to the bowl. Mix until the dough clumps together. Then knead the dough (fold it over on itself) for about 3 minutes using your hands.
3. Perform elasticity test: stretch the dough without ripping it, then release. Observe what happens. Record these and other general observations in the observation table.
4. Set the dough on a paper towel and clean out the bowl for use in the next part.
5. Fill the bowl with cool tap water. Place the dough in the bowl and knead it in the water. Continue “washing” the dough until the water is clear, changing the water as necessary. Small, brown pieces may dislodge from the dough. This is the bran (outer seed coating) in the flour. Getting rid of it will produce a better seitan.
6. At this point, the gluten from the dough should be isolated. Remove the mass of gluten from the water. Blot dry with a paper towel. Perform the elasticity test again. Record observations.
7. Bring your piece of gluten to the teacher. The teacher will simmer (gently boil) the gluten pieces in water for 15 minutes to make the meat substitute, seitan. Once cool, perform the elasticity test again and record observations.
8. Wash all equipment well and throw away the seitan.
Observation Tables

<table>
<thead>
<tr>
<th></th>
<th>Wheat Berries</th>
<th>Flour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dough after kneading</th>
<th>Gluten after washing</th>
<th>Seitan after simmering</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations after stretching</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General observations</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis

1. Elasticity describes the ability of dough to retract to its initial position after being stretched. Which sample demonstrated the greatest elasticity: dough, gluten, or seitan?

2. What evidence from the activity supports the following statement: Some components of dough are water-soluble?
3. Look up the chemical structure of starch. What features of its structure allow for starch to be soluble in water?

4. Why is it essential to knead the dough before washing it?

5. Bread doughs contain an essential ingredient that our dough lacked, a leavening agent, usually in the form of yeast. Leavening agents serve to produce gas. Predict how gluten and gas may interact to produce bread.

6. Compare the texture of the seitan to that of meats you have eaten—DO NOT eat the seitan prepared in lab! Do you think seitan is a good meat replacement based on texture? Why or why not?

Conclusion

In your own words, using three or four sentences, summarize how seitan is prepared. In your summary, be sure to use and underline the following terms: seitan, soluble, flour, starch, gluten, elasticity.