Student Activity 2: pH Calculations

Section 1: Setting Up the Dissociation Reaction

Strong acids: HCl, HBr, HI, HNO₃, HClO₄, H₂SO₄ --> all other acids are WEAK

Strong bases: Arrhenius Bases: LiOH, NaOH, KOH, RbOH, Ca(OH)₂ etc. (have OH⁻ in its structure) → all other bases are WEAK

Make sure to pay attention to the reaction arrow.

Samples highlighted the species in the product that controls the pH. You should circle those in yours.

<table>
<thead>
<tr>
<th>Category</th>
<th>Equation:</th>
<th>Conjugate Acid or Base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex: HNO₂</td>
<td>Weak Acid</td>
<td>Conjugate Base: NO₂⁻</td>
</tr>
<tr>
<td>Ex: NaOH</td>
<td>Strong Base</td>
<td>None</td>
</tr>
<tr>
<td>Ex: C₆H₅NH₂</td>
<td>Weak Base</td>
<td>Conj. Acid: C₆H₅NH₃⁺</td>
</tr>
<tr>
<td>Ex: HBr</td>
<td>Strong Acid</td>
<td>Technically: Br⁻, albeit very weak CB</td>
</tr>
</tbody>
</table>

KOH

(CH₃)₂NH

HClO₄

HClO

C₆H₅COOH
Section 2: Calculating the pH of Strong/Weak Acids/Bases
You will need your Ka/Kb reference sheet here!

Ex: What is the pH of 0.01M HCl?
Strong acid so just take the -log[H⁺] = -log[0.01] = 2

Ex: What is the pH of a 0.001M NaOH solution?
Strong base. It’s a base so we have to work through pOH =-log[OH⁻]=-log[0.001] = 3
pH=14-3= 11

Ex: What is the pH of a 0.5M HNO₂?
Weak acid so must use Ka to solve because the concentration of the H⁺ does NOT equal the concentration of the HNO₂.

Reaction: HNO₂ + H₂O ⇌ H₃O⁺ + NO₂⁻

Ka=\[\text{H}_3\text{O}^+]\[\text{NO}_2^-\]
[\text{HNO}_2]

<table>
<thead>
<tr>
<th></th>
<th>HNO₂</th>
<th>H₃O⁺</th>
<th>NO₂⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (initial)</td>
<td>0.5 from the problem</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C (change)</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>E (equilibrium)</td>
<td>0.5-x ~ 0.5</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Plug the equilibrium values into the Ka equation.
Ka value = 7.2 x 10⁻⁴

7.2 x 10⁻⁴ = \[\frac{x}{0.5}\]

X² = 3.6 x 10⁻⁴ (take square root)
X=0.0190M = [H₃O⁺]

NOW you can plug it into pH=-log[H₃O⁺] = -log[0.019] = 1.72 ◼️ answer for the pH
Ex: What is the pH of a 0.2M C₂H₅NH₂ solution?
This is a weak base. You can’t just use the pOH equation.
This is the SAME methodology as the weak acid above EXCEPT that the base will be a Kb
and you will solve for a pOH first.

Reaction: C₂H₅NH₂ + H₂O ⇌ C₂H₅NH₃⁺ + OH⁻

We have a Kb because this is a base.
Kb = \frac{[C₂H₅NH₃⁺][OH⁻]}{[C₂H₅NH₂]}

<table>
<thead>
<tr>
<th></th>
<th>C₂H₅NH₂</th>
<th>OH⁻</th>
<th>C₂H₅NH₃⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>I (initial)</td>
<td>0.2 from the problem</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C (change)</td>
<td>-x</td>
<td>+x</td>
<td>+x</td>
</tr>
<tr>
<td>E (equilibrium)</td>
<td>0.2-x ~ 0.2 Remember you can approximate away the – x because it is soooo small</td>
<td>x this is the one that really matters because it is the one that determines the pH</td>
<td>x</td>
</tr>
</tbody>
</table>

Plug the equilibrium values into the Kb expression.
I looked the Kb value up on the BACK of the pink reference sheet = 4.38x10⁻⁴

4.38 x 10⁻⁴ = \frac{[x][x]}{0.2}

(multiply and then take the square root to solve for x)
X=0.00936M=[OH⁻]

Now take the pOH=-\log[OH⁻]=-\log[0.00936]=2.03
To get to pH (always with a base)... pH=14-pOH = 14-2.02 = 11.97  final pH answer

NOW YOU TRY:
1. What is the pH of a 0.025M KOH solution?
2. What is the pH of a 0.15M C₆H₅COOH solution (the Ka is hard to read for this one... it’s 6.3 x 10⁻⁵)?

3. What is the pH of a 0.3M NH₃ solution?

4. What is the pH of 0.08M HI solution?