Exothermic & Endothermic

Background
In chemical and physical changes, energy can be transferred to or from the surroundings. For example, when a fire burns, it transfers heat energy to the surroundings. Objects near a fire become warmer and the temperature rises. In this experiment, you will make observations and evaluate whether heat energy is released or absorbed.

Purpose
To determine whether a process is exothermic or endothermic.

Safety
- Always wear safety goggles when working with chemicals in a laboratory setting.
- Handle acid carefully. If any gets on your skin, alert your teacher and immediately flush the area with water.

Materials
- NH₄Cl
- Water
- Thermometer
- Balance
- Test tubes (2)
- Weigh boat
- 10-mL graduated cylinder
- Zinc
- <1.0-M HCl

Procedure

Part I
1. Measure 5.0 mL of distilled water. Pour the water into a test tube.
2. Find the temperature and record in your data table.
3. Measure 1.0 g of NH₄Cl. Place your sample into the test tube with the water.
4. Measure the final temperature and complete your data table.

Part II
1. Measure 5.0 mL of hydrochloric acid. Pour the acid into a test tube.
2. Find the temperature and record in your data table.
3. Add a small piece of zinc to the hydrochloric acid. Gently stir until all zinc has reacted.
4. Measure the final temperature and record in your data table.

Data

Part I

<table>
<thead>
<tr>
<th>Initial temperature, T₁</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final temperature, T₂</td>
<td>°C</td>
</tr>
<tr>
<td>Change in temperature, ΔT</td>
<td>°C</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----</td>
</tr>
</tbody>
</table>

Part II

<table>
<thead>
<tr>
<th>Initial temperature, T_1</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final temperature, T_2</td>
<td>°C</td>
</tr>
<tr>
<td>Change in temperature, ΔT</td>
<td>°C</td>
</tr>
</tbody>
</table>

Analysis

1. Did you observe a physical or chemical change when you added NH$_4$Cl to the distilled water? Describe the evidence to support your answer.

2. Did you observe a physical or chemical change when you added zinc metal to hydrochloric acid? Describe the evidence to support your answer.

3. When you added NH$_4$Cl to distilled water, that was an (endothermic / exothermic) process and energy was (absorbed / released) by the system. Explain.

4. When you added zinc metal to hydrochloric acid, that was an (endothermic / exothermic) process and energy was (absorbed / released) by the system. Explain.

5. What you observed in part I is $\text{NH}_4\text{Cl}(s) \rightarrow \text{NH}_4^+(aq) + \text{Cl}^-(aq) \Delta H = 20 \text{ kJ/mol}$
 Rewrite this equation with the heat energy on the reactant or product side. Explain.
6. What you observed in part II is \(\text{Zn}(s) + 2 \text{HCl}(aq) \rightarrow \text{ZnCl}_2(aq) + \text{H}_2(g) \)

Is its \(\Delta H_{\text{rxn}} \) positive or negative? Explain.

7. Draw the general potential energy diagram for each part.

\(\text{Part I} \) \hspace{2cm} \(\text{Part II} \)